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FOREWORD

The Materlel Testing Directorate (MTD), Aberdeen Froving Ground
(APC), Maryland conducted this investigation and prepared this report
In order to improve accuracy of air blast pressure measurement., Work
began in May 1978 and was completed in December 1980, Funds for *hi s
study were provided by the In-House Laboratory Independent Resear: .
Program (ILLIR).

In documenting the various error sources that affect acraracy, a
certain negative flavor permeates the discussion, Many plots of erro-
neous measurements have been included; some of the errors were inten-
tivnally introduced, and some were discovered by accident. Normally,
such measurements would be discarded, and a footnote reading ''Data lout
at this location" would be inserted.

It is hoped that documentation of these errors will allow such
problems to be quickly recognized in the field so that corrective action
can be taken. The intent is to show that careful attention to detail
can produce accurate blast measurements. Tt 1s hoped that this objec-
tive has been achieved without leading the reader to believe that all
blast measurements are inherently plagued by errors,

Reference to pressure in the text of this report ls expressed in
units of kilopascals (kPa), Unfortunately, many of the calculator pro-
grams written for plotting pressure versus time use pounds per square
inch, Usually the plots are presented to i{llustrate the shape of a
curve rather than read a specific value. 1t 1s hoped that the conversion
nomagraph shown in section 2,1 will alleviate inconveniences caused by
use of different units.

Appreciation 1s expressed to the people who have provlded data,
ideas, and motivation for this report. They are: Ceorge Coulter,
Edward Schmidt, Edmund Gion, and George Teel of the US Army Ballistic
Research Laboratory; James Patterson and Benjamin Mozo of the Aeromedi-
cal Research Laboratory; George Garinther, Joel Kalb, and Ber‘'amin
Cummings of the Human Engineering Laboratory. Appreciation 1+ also
expressed to John D, Reynolds, who initiated this study.
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SECTION 1, SUMMARY

1.1 BACKGROUND

The Materiel Testing Directorate (MTD) at Aberdeen Proving Ground
(APG) routinely makes air blast measuremunts. If the peak pressure level
ls expected to be below 170 dB (6 kPa or 1 psi), microphones are nsed.
Pressures above 170 dB require use of a more rugged pressure transducer,

The transducers available at MTD for measuring blast overpressure
were designed more than 20 years ago for measuring large explosions
simulating conventional and nuclear bomb detonation, and have changed

L very little.

B Although the transducers and procedures have not changed much in
20 years, the type of workload has changed. Most measurements are now
: made to determine human tolerance to existing muzzle blast. Thcse

' measurements generally fall in the range of 170 to 190 dB (6 to 60 kPa
or 1 to 10 psi), ‘

: Muzzle blast measurements of earlier weapons were evaluated by a
b criterion stating that the peak pressure must be less than 3 psi (20.7
- kPa) in the crew area. This criterion was usually met. Since muzzle
S blast was not a critical area, it did not generate much managerial in-
: terest in the accuracy of the measurements being made.

! The Army's effort to make weapons shoot farther and weigh less has

b created a situation that makes muzzle blast in the crew areas critical,
Because training restrictions, and even acceptance or rejection of a
weapon may be based on muzzle blast overpressure measurements, it is
desirable that these measurements be as accurate as possible. Errors

. as large as 15 to 20% that could be tolerated in measurement of a bomb
explosion are not acceptable in measurement of muzzle blast.

' A weapon that has been a focal point for muzzle blast ovrrpressurce
. problems is the M198 howitzer f{iring the M203 propelling charge shown

; in figure 1.1-1. Tests conducted by TECOM indicated that with minor
exceptions, this weapon passed the human tolerance criteria. Su geon
General testing indicated that the weapon failed. Both sets of measurc-
ments could be replicated. This discrepancy indicated the need for
improved, standardized measuring techniques.
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1.2 OBJECTIVE

The objective of this study 1s to {mprove the aciwuracy of alrblast
overpressure measurements In the range of 170 to 190 dB from +207% to
15%.

1.3 SUMMARY OF PROCEDURES

The original plan for this study was to replace the LC~43 pencil
gages with two LC-70 miniature transducers placed in a large, pencil-
shaped ojive, and to replace pentolite calibration with shock tube cali-
bration, The new transducers were to be qualified using pentolite ex-
plosions and comparing thelr performance to the performance of the LC-13
transducer.,

For a variety of reasons, it was determined necessary to adopt a
new approach. Several different trausducers and calibration techniques
ware examilned.

In addition to laboratory tests performed specifically for this
study, valuable data wer2 gathered while making field blast measurements
for specific weapons, such as the Bl-mm mortar, the M198 howitzer, and
the 105-mm tank gun. Data were also obtained from other organizations
at APG, such as the Human Engineering Laboratory and the Ballistics
Research Labhoratory,

The culmination of this study was a 3-day field test using pento-
lite that was kuown as the "Swan song shoot." This testing was accom-
plished 20 to 22 August 1980. It provided confirmation and documenta-
tion of the effects nf mounting technique, sensitivity to extraneous
effects, and calibration.
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1.4 SUMMARY OF RESULTS

Figure l.4-1 shows blast overpressure produced by an 8-inch howltzer
as mea,ured with an LC-33 pencil gage. The physical Implications of
thi plot are rather unusual.

Note that ambient pressure seems to Increase after the muzzle blast
ceases. Such drastic changes in ambient pressure are associated with
severe weather,  This rapid change in ambient pressure could possibly be
observed In an aircraft flying through the eye of a hurricane,

Note the large pressure oscillations indicated after the muzzle blast.
Pressure oscillations of this magnitude would be perceived as an
unbearably loud noise such as one might encounter next to a {.;horn.

It seems rather unlikely that one would make a muzzle blast
measurement while firing an 8~inch howitzer from an airplane flying
next to a foghorn located in the eye of a hurricane! For a more plausible
explanation of what may have happened, refer to the sectlons of the report
on acceleration error and thermal drift (5.2 and 5.6).

Twenty years ago, a measurement like the one shown in figuvre 1,4-1
might have been considered acceptable. At that time, only the positive
phase of a blast measurement was analyzed, 1In figure 1.4-1 the positive
phase only lasts 7 milliseconds, and appears to be a reasonable representation
of what occurs during the positive portion of a blast wave.

The rarefaction phase of the blast wave was almost totally ignored in
earlier years for two reasons. First, it was assumed that most damage
cccurred during the positive phase. Second, difficulties such as those
shown 1in figure 1.4-1 were typical of instrumentation available twenty
years ago, making measurement of the rarefaction phase difficult,

The current method of analyzing human tolerance to blast makes measurement
of the rarefactfon phase important. Instrumentation now available makes more
accurate measurement of the rarefaction phase possible.

Measuring the output of an eclectrical pressure transducer to ‘17
{s a relatively strafghtforward matter. Insuring that this signal
varresponds to 5% of the true side-on pressure s much more difficult,

Agreement among several methods of calibrating the same transducer was
+2% at best and typically 45%. This performance can be lmproved by selecting
the best transducers from a lot, repeating the calibration several times and
discarding the outliers. Such techniques are only practical when measurcments
of only 1 or 2 channels are required, and sufficient time for preparatlon i«
avallable.
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In addition to tolerances as large as t5% for calibration, allowances
must be made for other errors such as thonse caused by:

a. Acceleration (sections 5.1, 5.2, and 5.3)
b. Misalignment and mounting configuration (section 3.3)

¢, Transducer anomalies (section 3.7 and 3.4)

é d. Thermal drift (section 5.6)

§ €, Ambient temperature effoects (section 5.4)

% f. Thermal transients (section 5.5)

; g. Aerodynamic cleanliness (secttion 5.8)

% h. Effects of filters and tape recorders (sections 6.2, 6.3, and 6.4)
% i. Reflections from objects at the test site (section 5.7)

E

% J. Electrical noise (section 6.5)

% As Jiscussed elsewhere in this report, each of these extraneous

% phenomena can become an indistinguishable part of the pressure measure=~
g ment. Careful attention to measurement technique can reduce, but not

completely eliminate these factors.

MBS

411 transducers tested were found to have specific advantages and
disadvantages; no single transducer was shown to be best for all situations.
Recording instrumentation available, the measurement situation, and the
specific type uf measurement required influence the cholce of transducer
type and mounting arrangement.

1.5 ANALYSIS

] Careful attention must be given to test set-up and data analysis

: to insure that the results are representative of the b.ast wave that is
present, rather than anomalies caused by extraneous effects. Choice of
] instrumentation and measurement techniques affects sensitivity to
cxtrencous effects,
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Based on the technical problems discuassed in this study, the

following estimates of expected level of accuracy are presented:
Expected Level

Type of Measurement of Agreement

Laboratory conditions, hand-picked transducers 1 to 2%
Measurement of only one or two channels

Typical laboratory equipment 2 to 5%
Field conditions 5 to 10%

In addition to tolerances based on technical problems, further
allowances must often be made for non-technical matters which have a
significant effect on measurement accuracy., There is an inevitable
conflict between the desire to obtain the best possible measurement
and the desire to complete the test as quickly as possible with the lowest
grade qualified personnel.

The cost and time required to conduct a test are visible, intensively
managed factors. The accuracy of the data is a much less tangible factor
which occasionally suffers in deference to more practical matters of time
and cost.

If an anomaly is noticed in the neasurement while testing is in
progress, troubleshooting the cause of the problem and fixing it become
very expensive tasks. A typical test may involve as many as 15 people,
At current labor rates of $15 to $20 per hour, it costs more than $4
per minute to check cables, look for loose connections, or remount and
aline a transducer.

Due to thermal considerations, certain tests require that rounds
be fired at or above a specified rate, In this situation, data anomalies
catnot be remedied if they are discovered while firing, even 1f the
problem requires only minor adjustrent,

Because of these reasons, needed changes to test set-up are often
not made once testing has begun. In such situations, it is easy to
rationalize that a competent analyst will he able to distinguish the
valid portions of the waveform from anomalies caused by extraneous
effects.

In complex tests, which involve many measurements, or several different
kinds of measurements, these problems become acute. The probability of all

instrumentation working properly all of the time becomes small. Certain

measurements will inevitably be sacrificed so that the test can be completed

in a reasonable time.
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1.6 CONCLUSIONS

a. Measurement and evaluation of muzzle blast has become a critical
operation because many weapons produce blast levels that approach or
excecd human tolerance limits,

h. Accurate blast measurements require careful attention to test
set-up and data analysis to insure that the results are representative of
the blast wave that is present, and not anomalies caused by extraneous
effects,

¢. Cholice of instrumentation and measurement technique can dramatically
affect test results, For example, 1if measurements of a marginal weapon
are made with a nolsy tape recorder, using a transducer that ampiifies
when misaligned, and filters that overshoot, the results may indicate
that the weapon fails the human tolerance criteria, when in fact it
should pass. Another weapon, when tested with a digital recorder, with
a large signal to noise ratio, a transducer that attenuates when misaligned,
and fi{lters that are set too low, may be shown to pass the human tolerance
criteria when the blast wave present in fact exceeds the criteria.

d. Because blast measurements are often both critical and difficult,
particular attention must be given to the nontechnical compromises that
must be made. Long set-up time and the need to repeat tests when data
has anomalies should be anticipated.

e, Calibration of transducers is a critical operation, Many
transducers exhibited large discrepancies (5%) between different
tranaducers., This problem i1llustrates the need for more consistent
transducers as well as the fact that there is no perfect techulque for
calibrating AC coupled transducers.

f. 1he overpressure levels observed from Pentolite explosions
were quite different from what was expected (10%). Sufficient time to
determine the reason for this discrepancy was not available.

g. Based on the testing workload, equipment available, and weather
vonditions encountered at APG, the low lmpedance, quartz element transducers
with suppressed resonance have the best compromise of transducer characteristics
for use by MTD,

10
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1.7 RECOMMENDATIONS

4. Pressure ftransducers should be checked on three devices (static
pulse calibrator, sine wave calibrator, and shock tube) befare critical
blast overpressure tests.

It is felt. that these tests will cost less than the old pentolite
calibration technique, and provide traceability to NBS, which dld not
exist before,

b. Further study should be conducted to accomplish the following
cbjectives:

(1) Develop a better way to mount miniature transducers that
isolates the transducer from acceleration and allows accurate alinement.

(2) Determine why the pentolite results disagreed so greatly with
the laboratory calibration results.

(3) Develop techniques to improve agreement among laboratory
calibration techniques.

(4) Explore development of an improved transducer with commercial
manufacturers,

c. Selection of a transducer for critical blast overpressure tests
should be based on thorough testing of the transducer's characteristics
under known conditions. Partlcular attention should be given to the
following characteristics:

(1) Blast wave response (overshoot, ringing, flow effects).

(2) Acceleration sensitivity,

(3) Temperature sensitivity,

(4) Ease and repeatability of calibration.

d. For critical blast overpressure tests, an on-site inspection
of the data as they are acquired should be made to insure that the best
possible measurement is obtained. This process will obviously increawne

the cost and time required for the test, If severe anomalies are noted
in the data, the test should be recpeated.

11
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SECTION 2, GENERAL DISCUSSION OF BLAST OVERPRESSURE

2.1 UNITS OF PRESSURE MEASUREMENT

Pressure is force per unit area, and should be expressed in units
of force divided by length squared. Various units are used; the four
most frequently cited are:

a. Pounds per square inch (psi).
b. Pascals (Newtons per square meter).

¢. Atmospheres (dimenaionless ratio of measured pressure to
standard, sea level atmospheric pressure),

d. Decibels (dimensionless logarithmic ratio of measured pressure
to a reference pressure).

Figure 2.1-1 shows the relationship between these four ways of
expressing pressure, Most equipment in the United States is calibrated
in psi.

In the interest of international standardization, the Army has
adopted the pascal as the standard unit of pressure., The prussure
levels discuassed in this report are expressed in kilopascals (kPa),
Many of the plots of pressure versus time are presented in psi rather
than kPa because the plotting programs are written for units of psi,

The decibel (dB) is a unit commonly associated with hearing. The
reference pressure for dB is 20 micropascals which 1is estimated to be
the lowest pressure detectable by the human ear.

A few convenient relationships should be remembered when using
lecibels:

a, A difference of 0,1 dB is a 1% discrepancy.
b. A difference of 1 dB is a 12% discrepancy.
c. A 2:1 ratio of pressure (which 18 either a 50% discrepancy or

a 1007 discrepancy, depending on whether the small number or the large
number 1s used as a reference) is a difference of 6 dB.
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2,2 SHOCK WAVES

Most concern about blast pressure is associated with events that
occur outdoors in open ailr. A convenlent means of simulating blast
experiments in the laboratory iy the shock tube. As shown in figure
2.2-1, the pressure versus time waveforms of these two pressure sources
is different.

The shock tube produces a flat-topped pressure versus time curve.
The duration of the flat portion is a function of the lengtl of the
driver portion of the shock tube.

Free air explosions produce a pressure versus time curve that be-
gins to decay immediatsly after peak pressure ig obtained., 1In outdoor
explosions, reflection of the blast wave from the ground plane produces
a second pressure wave., This reflected wave travels faster than the
incident wave because it 1s traveling through air already heated by the
incident wave. When the reflected wave catches up with the incident
wave, the two combine to form what is known as the Mach stem,
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2.2 (Cont'd)

There are two types of pressure associated with subsonic flow
of air: static pressure and dvnamic pressure. The sum of static
pressure plus dynamic pressure 1s cullad stagnation pressure., A blast
wave travels supersonically and has three types of pressure associlated
with 1t: Side-on preassure (static pressure), face-on pressure (re-
flacted pressure), and stagnation pressure (sum of static and dynamic
pressure). Figure 2,2-2 gives pictorial descriptions of the three
types of blast pressure, examples of thelr relative values, and typical
waveforms that could be expected in a shock tube.

Side~on or static pressure is the piressure behind the blast wave.
It must be measured by a transducer mounted perpendicular tc the direc-
tion of wave propagatien, and the transducer must not interfere with

the propagation of the wave. The wave velocity is related to the side-
on pressure by the Rankine-Hugoniot lquation for air:

Pg » Po L (m%-1)
where

Pg = side-on pressure'

Po = amblent pressutre

m = Mach number of wave.

Mach number is a dimensionless expression of velocity., It ia the
ratlo of the wave veloclty divided by the speed of sound in amblent air.

Mach number can be found by measuring the velocity of the wave and the
temperature of the air:

m m

& j<

where

m = Mach number

v = wave velocity

a = gpeed of sound In ambient air
but

20,09 VT

o1
|

where

-3
[ ]

ambient temperature in deprees Kelvin,

17




2.2 (Cont'd)

Reflected or face-on pressure is that pressure developed when a
blast wave strikes an infinitely large wall which ie perpendicular to
wave propagation and reflects back in the exact opposite direction,
Reflected pressure is related to side-on pressure by the following
equation:

Mo + 4Py

TP, B, )

P.= 2 Py (

where b

Reflected pressure

-3
a3
[ ]

Pg = Side~-on pressure

o
(=)
L]

Ambient pressure, .

Stagnation pressure is the sum of the static pressure (side-on) .
plus dynamic pressure which 1s caused by particle flow behind the wave.
Tropagntion of the blast wave alone involves no significant displace-
ment of the air molecules. Behind the wave, the alr molecules are
displaced, but at a much slower vaeleocity than the supersonic blast wave, i
The relationship between particle velocity and side-on pressure 1s: H

5P a

u om == ¥
7Pq !

where !

[ =4
[ ]

Particle velocity 3

Side~on pressure

3
[
[ |

P, = Ambient pressure .

a Speed of sound in ambient air.

Stagnation pressure can be expressed as che sum of silde-on presautre
plus dynamic pressure:

7
Pgtag = Py + p u”
2
where k

Pytag = Stapnatlon pressure

Py = Side~-on pressurv i
p = Denslty of ambient air i
u = Particle velocity, ‘

i
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2.2 (Cont'd)
A more convenient expreesion for calculating stagnation pressure
in terms of side-on pressure and ambient pressure alone ls:

5. Pg?

Pstag = p’f + 2 TP, + Pg
]
where
Pgrag ™ Stagnation prassure ri
Pg = Side-on pressure
Py = Ambient pressure.

Practical measurement of stagnation pressure can be made by con- :
structing a probe that will allow the blast wave to travel over it, i
As shown in figure 2.2~2, the transducer mounted in the point of the I3
probe will instantaneously register reflected pressure when struck by !
the blast wave, but will register stagnation pressure once the wave
continues past the tip of the probe.

The duration of the period during which reflected pressure is
reglstered is called relief time., Reliefl time 18 a function of the
diameter of the flat tip of the probe.

st 5‘-"5&4"%5“'_41‘# i s e T 2

IRl L WA R s e

The equations given in this section are based on ailr behaving as
an ideal gas with constant specific heats. For the pressure levels |
described in this report (less than 100 kPa), this assumption is valid. .
At higher pressures, the thermodynamic properties of real air must be
used and the mimplified equations are no longer valid.
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2,2 (Cont'd)

! 3
-i-#- )(,__. i
3 m“

N Prensducer SIDE-ON PRESSURE _—

5 ’
3
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a1
-
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!
-

REFLECTED PRESSURE

e e e T -
s TN T Ry N T N N
e+ 7 il e i ks e b SR AR aladicalon &2

r - P + P []2
ntay d e
2 ;
STAGNATION PRESSURE

l i

. ,

P = p o SHOCK PARTICLE i
a r stag VELOCLTY VELOCITY s

(KPa) _Kpa) _(RPa) (Meters/Sec) (Metern/Sec)

10.0 20.8 10,4 155.0 21,1 . ,
10,0 67,3 13,0 181.7 04
50,0 119.8 58. 2 06,6 100, 7 ‘1
{
70,0 177.7 85,7 430,1 193,19 P
y i
Lo, 0 274. 1 130.9 467 1 176.8 X
.
Floure 2.2-2, Types of pressure assocalted with a shock wave. H
1
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2.3 DIRECTIONAL EFFECTS

Blast overpressure 18 a directional phenomeneon. Figure 2.3~1 is
an excerpt from The Effects of Nuclear Weapons by Glasstone (ref 1). It
shows how overpressure changes as the angle of a blast wave striking a
surface is varjed. In this plot, O degrees represents face-on and 90
degrevs represents side-on, 1t should be noted that this Information Is
for surfaces that are large with respect to the sensing transducer. If
the sensor represents a significant portion of the surface, the results
in figure 2,3-1 will not be duplicated.

Because of the directional nature of blast waves, it is {mportant
that transducers be carefully aligned in the proper direction., In com-
plicated measurement situations, blast waves are reflected from many
objects from different directions. In these situations, only certain
portions of the pressure time history can be measured accurately.

An omnidirectional pressure gensor would be ideal, but no such

gage exists, Some pages are, however, more sensitive to misalignment
than others. This characteristic will be examined later in this report,
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<.4 HUMAN TOLERANCE TO BLAST OVERPRESSURE

At the time this report is being written, human tolerance to blast
overpressure is a subject of intense study by the Army. At present,
it 1is not known how much blast overpressure can be tnlerated and what
parts of the body are most sensitive to blast.

In the past, it was assumed that damage to the ear occurred before
any other type of damage. Noilse limits for Army materiel are specified
in MIL=-STD-~1474B (ref 2). The limits are prescribed in terms of peak
side-on pressure and B duration., B duration has an explicit definition,
but is essentially the time required for the pressure versus time curve
to decay to 10% of the peak value, Figure 2.4-1 show: the limits pre-
scribed by MIL-STD-14748.

The authors of MIL-5TD-1474 have puinted out in reference 3 why
side-on rather thau face-on pressure was chosen, It 1s stated that
various transducers differed by as much as 3 to 10 dB when measuring
face-on pressure. Good agreement between various transducers was
observed for side-on pressure measurement.

Until current research is completed, the Army Surgeon General has
stated that crew positions for new weapons will be chosen so that the
worst case observed shall not exceed the "2" curve shown in figure 2.4-1,
Measurement techuiques are proposed in standardization of muzzle blasc
overpressure treasurements (ref 4). Many of the experiments and examples
presented in thils report provide justification for the guldance presented

in reference 4.
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2.5 MUZZLE BLAST

Energy released by propellant combustion launches the projectile
and creates muzzle blast. The pressure field created by muzzle blast
is symetrical about the line of fire but is not spharically symetrical.
As shown in figure 2.5-1, the center of pressure moves along the line
of fire.

i1t has been sugpested by Cummings (ref 5) that near the muzzle, the
center of pressure moves at the velocity of the projectile. Figure 2.5-5
shows the shape of equal pressure contours based on this prediction. Note
that these predicted contours agree well with the measured contour.

i The above discussion affects muzzle blast meacurement in two sig-

. nificant ways. First, as shown in figure 2.5-2, steep gradients exist

¢ near the muzzle. Extreme care must be used in placing transducers.
With the 8l-mm mortar, crew locations are only a few calibers from the
muzzle, a difference of 15 cm in locations caused in variation of as
much as 50% in peak pressure.

B D ST
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2.5 (Cont'd)

Fiyure 2oh-1,

Photopraphs of muzzele blast waves,  Note that in

top photo, projectile has Just exited and center ol pressure (white dot)

iv oAay2 calibers from the muselo,

A 28 calfberd from the muzele, and fhe conber

From the muzzate (photopraphs conrtesy of the

Laboratoryy,

L4 -~ N

e Nt W doad 10 Sk MM | e

0l

oo the hottom photo, projoectiie Is

prossure A~ H caliboers

s Army Ballisc e Research
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2.5 (Cont'd)

8lmm Mortar Blast Field

ceneee--- 180-Hazard Contour

——— Predicted lso-Pressure
Contours

Figure 2,5-~2, Comparison of predicted constant pressure contours and
measured constant hazard contour. Predicted contours are of the form
C(l1 + 0.86 COS8) from reference 5.
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Sceatd, since the center ol pressure moves, thete s no o single
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2.6 PROJECTILE SHOCK WAVES

A supersonic projectile genarates a shock wave as it travels through
air. This shock wave produces a classic "N" wave in the pressure ver-
sus time history. When a transducer is placed in a location where the
projectile shock wrve reaches the transducer before the muzzle blast,
the transducer will record both the "N" wave and the muzzle blast wave.
Figure 2.6~1 shows such a location, Figure 2,6-2 shows a pressure ver-
sus time history with both the projectile shock and muzzle blast,

The armor piercing, discarding sabot (APDS) round produces several
"N" waves, as shown in figure 2.6-3, This is reasonable because each
supersonic object (projectile, sabot, sabot pedals, etc.) produces an
independent projectile shock wave. Note that the pressure versus time
history measured at the same location producea no "N" waves when a
blank is fired, as shown in figure 2.6-4,

When an artillery shell is detonataed, each of the thousands of
fragments produced will generate an '"N" wave as long as the fragment

is traveling at supersonic speed. Note the barrage of "N" waves that
arrive before the main blast in figure 2.6-5.
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2.6 (Cont'd)

Fivure 2.6=-1. Photegraph of muzzle exit. Note that both the muzzle
blast wave and the projectile shock wave are visible. A transducer in'
Thartr

focation "X would record both waves (photograph, courtesy of US Army
ol lictic Research Laboratory),
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SECTION 3. BLAST OVERPRESSURE TRANSDUCERS

3.1 INTRODUCTLON

A variety of transducers are commercially available for measurement
of blast pressure. The transducers studied are shown below in figure
3.1-1. A complete sampling of all transducers available was not made.

Transducers can be divided into two broad categories. Some, such
as the LC-33 pencil gage and the PCB 113 lollipop are designe. specif-
ically to measure side-on pressure and include an aerodynamic housing.
Miniature transducers, such as the other four transducers shown in
figure 3.1-1 can be used to measure side-on, reflected, or stagnation
pressure. The shape of the mounting fixture and its direction of align~
ment determine what kind of pressure is measured.

cprg
N ‘l.l.|.ln|||(‘u|||tL l‘goz'a
2 4 8 ? T

LC-33 rPEnciL

7.

) <o=PCB 113

-

Figure 3.1-1. Side-on and miniature pressure transducers.
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3.2 MINIATURE TRANSDUCERS

B R LIE o . Y

Mininture pressure transducers can be used for a variety of pur=-
poses, 1-  shape and orientation of mounting used determine the type
of pressure measured (slde-on, face-on, stagnation, etc.), Because
the sensing element is small, a blast wave truavels over 1t quickly and
a short rise time is observed. This characteristic ls fmportant in
measurement of small arme blast because the pressure decays rapidly
after wave passage. If the sensing element is not small enough, the

} pressure will begin to decay before the wave has finished traveling
. acrosd the element. True peak pressure will not be meamsured in this
' case,

3.2.1 Susquehanna Instruments Model ST-2

: The 8T-2 page was used in gathering the base line data for MIL-STD-
‘ 1474, Figure 3,2-1 shows the side-on response of the §T-2 gage in the

! USABRL 58-c¢m (24=1in,) shock tube. It is normally supplied with a screw-
on impedance converter and operates in the low Impedance, voltage mode,
Its specifications are below:

3 a., Electronics: Voltage mode.

b. Crystal: Lead metaniobate.

¢. Resonant frequency: 250 kHz.

d. Crystal diameter: 5.33 mm.

WS B B e

¢, Time constant: 200 milliseconds (measured)?.
f. Acceleration sensitivity: 0.014 kPa/g (0.002 psi/z) (measured)?.

8This quantity was not available in the manufacturer's literature, so it
was measured on one sample transducer.

Y TITaT g wrTy T e
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i
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5.2,2 DPCB Model 113
The PCH 113 transducer has two crystals, one to sense pressure
and one for acceleration compensation. This two degree of frecdom
system is tunad to produce “frequency tailored response’ which suppresses
ringing at the resonant frequency. The 113 element is available in a
variety of physical coufigurations and may be purchased as a charge
type or low impedauce, voltage mode transducer. The side-on response
of the PCE gage in the USABRL shock tube is shown in figure 3,2-2.
1ts specifications are below:

a. Electronics: Voltage mode or charge type.

b. Crystal: Quartz.

¢, Resonant frequenecy: 300 kHz.

d, Crystal diameter: 5.55 mm,

e. Time constant: 10 seconds.

£. Acceleration sensitivity: 0.014 kPa/g (0.002 psi/g).

g. Chanpe in scale factor with temperature: 0.054%/C° (N.03%/°F).
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3.2.3 Celesco Model LC-70

The LC-70 ir the smallest gage tested in this study. Filgure
3.2-3 shows different examples of the side-on performance of the LC-70
gage in the USABRL shock tube, Note that the waveforms from the LC-70
are not as clean as the waveform produced by the PCB gage. Because of
these anomalies, this gage was used primarily for making velocity meas-

urements rather than peak pressure measurements. Its specifications
are below:

a. Electronics: Charge type or voltage mode.
b, Crystal: Lead zirconate titanate.

¢. Crystal diameter: 5.28 nm.

d. Time constant: 10 milliseconds.

e, Acceleration sensitivity: 0.09 kPa/g (0.013 psi/g).
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3.2.4 Endevco Model 8510

The Endevco B510 shown in figure 3.2-4, 18 a newly developed
plezoresistive, strain type transducer, It is the only gage tested
that had DC response. 1t is temperature=-compensated to minimize re-
sponse to thermal transients and scale factor change caused by temper-
ature change. Two models of this gage were examined. One model has a

; full scale range of 1379 kPa (200 psi) and a resonant frequency of
: 320 kHz, the other had a full scale range of 103 kPa (15 psi) and a
‘ resonant frequency of 100 kHz.

T T

Figure 3.2-4. Photograph of Endevco 8510 transducer.

Side-on performance of the 100 kHz model in the USABRL shock tube ,
18 shown in figure 3.2-5. Note that the resonant firuquency is highly {
under-damped and is approximately 130 kHz. The reason resonance is
3 excited is because the time required for the blast wave to cross the
diaphragm (~5 microseconds) is close to the rise time of resonant os-
c¢illation (v3 microseconds). The 1379 kPa model has a resonant fre-
quency high enough that side~on pressure waves of the level discussed '
in this report should not exclte resonance, A
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The specifications of the Endevco rage are listed below:

. FElectronics: 4 arm strain bridge.

b, Sensor: Diffused silicon diaphragm with Integral piczo-
resistive strain gages.

¢. Resonant frequency: 100 kHz (103 kPa model), and 320 kHz
(1370 kPa model).

d. Diameter of diaphragm: 2-mm.

e. Time constant: = (DC responsa).

£, * celeration sensitivity: 0.002 kPa/psi (0,0003 psi/g).

7. Change in scale factor with temperature! 0.036%/°C (0.02%/°F).

The lndevco gage was thegeasiest gage to calibrate because of 1its
DC response, It showed excellent agrcement between the static pulse
method of calibration and the sine wave method of calibration.

The Eadevco gage has very little response to thermal transients,
A room temperature Endevco gage immersed in freezing water produced an
indication of only 0.3 kPu. A PCB gage subjected to the same experi-
ment indicated 150 kPa.

The diffused silicone diaphragm used on the Endevco gage acts not
only as a pressure sensor, but also (unfortunately) as a light sensor,
A flash bulb set off in front of an Endevco gage will cause a full
scale Indication, A PCB gage subjected to the same experiment indi-
cated less than 1% of full scale,

The photo sensitivity of the Endeveco gage could be a problem in
measurement locations near muzzle flash or the fireball of free air
explosions. Normally, however, the gage 1s pointed perpendicular to
the source of flash, and photo sensitivity 18 not a problem.

Although the Lndevco gage produced usable records in the shock

tube, no acceptable data were produced in fleld testing. The following
experiment was conducted to demonstrate the effect of cable length,
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The transducers were placed on a pencil-shaped ojive approximately
10-em in front of a 10,16-cm (4-in.) diameter shock tube. A typical
wave form from a PCB transducer is shown in figure 3,2-6., Note that a
peaked wave is produced,

The response of the 100 kHz Endevco gage with short and long ca-
bles is shown in, figures 3.2-7 and 3,2-8, respectively. Note that
despite the ringing at resonant frequency in figure 3,2-7, it appears
that a basically good peaked wave is present and the rise time is
gshort. 1In figure 3.2-8, note the addition of long cable (152-m) causes

a filtering effect that slows the rise time and suppresses resonant
ringing.

Similar results for the 320 kHz Endevco gage are shown in figures
3.2~9 and 3.2=10. In figure 3,2-9, note that a fairly good peaked
wave is produced with the short cable. The higher resonant frequency
eliminater ringing, but the elactrical noise level is increased.

Remember that the maximum pressure shown is only 1% of the full scale
pressure of this model.

Also note the atrange shape of the peak., The reason for this
shape is not known, but it is felt that part of this distortion is
caused by the fact that the dlaphragm 18 recessed approximately one
diameter below the top of the gage, and part of the distortion is
causad by the eclectrical noise that is present,

In flgure 3,2-10, note that long cable length again has a filtering
effect that increases the rise time, Experiments have shown that 150
meters of the standard fcur or eight conductor strain-gage cables used

have a frequaucy response of 10 kHz and attenuate signals at 100 kH=
by as much nr 12 dB.

Unfortunately, this information was discovered after the field
testing phose had been completed. It is felt that if special balanced
line ("twinax" cable) wera to be used on the signal lines of the strain
bridge, acceptable frequency response cnuld be obtailned.

Even when rhort cable is used (i.e., when no frequency response
problems are present), the ringing and waveform distortion of the
Endevco gage are significant problems. Because of these problems, the
Endevco gage was used primarily for assiatance and verification of
calibration techniques.
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3.3 MOUNTING MINIATURE TRANSDUCKRS

As shown in tipure 4,3=1, minfature apes can be placed in a varlety
of mounts.,  Several tosts were conducted in the pentolite blast dield to
examine the differvnes between the various mounting technigqees,  Fijures
3,.3-2 throuehi 2o -4 show the dimensions ol the various mounts,

Gion and Coulter ol tle Us: BRL are conducting g related study ia
the 58~cm shock tube (ref 6). Nata from the USABRL shock tube study
: are presented in this section with the permission of the authirs.

|
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: L PR A
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Figure 3.3-1. Mounts for minlature transducers., “lockwise from the
left: blunt cylinder mount, pencil probe, skimmer plate, n'='aturce
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3.3.1 The Skimmer Plate

‘The skimmer plate used in this study was designed by George Coulter
of the USABRL. Both Coulter's skimmer plate and a similar but slightly
larger disk were used in the study by Gion and Coulter (ref 6),

Flgure 3.3-5 ls the face-on, shock tube response of a Kistler gage
mounted in the larger disk. Face-on response of Coulter's skimmer plate
was not measured in reference 6,

Note that face-on pressure is maintained for a relief time of
roughly 170 microseconds, The pressure then drops down sharply to
near stagnation pressure (at the pressure level used, stagnation pres-
sure % side-on pressure).

Figure 3.3-6 shows the shock tube response of the skimmer plate
to small angle changes, Note that a change of 5 degrees in angle
causes & 5 percent change in amplitude of the initial peak.

Figure 3.3-7 shows the skimmer plate Jdesigned by Coulter mounted
on a lightweight stand in the field, Figure 3.3-8 shows the response
of the skimmer plate to the peaked wave produced by free field pento-
lite blast., Note that when used face-on, the theoretical faze-or pres-
sure value is maintained for roughly 150 microseconds before decaying
to stagnation (& side~on) preasure,
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3.3.2 The Blunt Cylinder Mount

Figure 3.3-9 shows the response of the blunt cylinder to shock
tube blast waves of increasing pressure, Note that a peak of roughly
40 microseconds duration occurs. As pressure is increased, the peak
becomes more pronounced., The value of the peak indicates sidc-on pres-
sure,

Figure 3.3-=10 shows the effact of incidence angle on the blunt

a cylinder mount in the shock tube. Note that in these unfiltered records,
: the theoretical face-on value ofw 2.2 times the side-on pressure ie

reached when the traneducer is oriented face-on,

Figure 3.3~11 18 a photograph of the blunt cylinder mount attached
to a lightweight blast stand in the field. Figure 3.3-12 shows the
response of the blunt cylinder mount at various angles in a pentolite
blast field. Note that the 40-microsecond peak is again present, Note
? also that the theoretical ratio (w2.2) of side~on to face-on pressure

was not observed. It is felt that failure to reach the theoretical
& value 18 caused partially by the response of the blunt cylinder to a
& peaked wave and partially by the (0-kHz filter that was used in figure
- 3.3-12.

When the blunt cylinder mount is used, 1t is desirable to have a
sighting plane longar than the outside diameter of the gage surface,
Figure 3,3~13 shows a l3~cm-diameter removable plastic sighting disk
that was ured to align the blunt cylinder mount.
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3.3.3 The Pencil Probe

Figure 3.3-14 shows the pencil probe attached to a lightweight
blast stand in the field. This probe is a plastic pencil-shaped ojive
with-a flat top. A miniature gage (ST-2 or PCB 113) is mounted in the
ojive flush with the flat portion. Modeling clay is used to hold the
miniature gage in place and also to provide isolation from acceleration.

Figure 3.3-14. Photograph of pencil probe attached to stand.

Figure 3.3-15 shows the response of the pencil probe at various
angles in the pentolite blast field. Note that there is no sharp pres-
sure drop from face-on to stagnation as was present with the skimmer
plate. The relief time of the pencil probe is, however, significantly
longer than the relief time of the blunt cylinder mount.

Note also that the ratio of side-on to face-on pressure is not
quite up to the theoretical value. The pencil probe does, however,
come closer to the theoretical ratio than the blunt cylinder. Once
again, it is lelt that the failure to reach the theoretical ratio is
caused partially by the responsce of a pencil probe to a peaked wave and
partially by the 40 kllz filter.
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3.3.4 Comparison of the Blunt Cylinder, the Skimmer Plate, and the
Pencil Probe

Figure 3.3-16 shows the effect of wmall angle misalignment of the
three methods of mounting miniature transducers. This chart was com=-
piled by comparing the mean peak pressure of two shots obtained from
pentolite using the ntated confipuration and misalignment angle to the
mean peak pressure of {ive shots obtalned with that configuration at
grazing incidence (i.e., side~on orientation), All data were low paur

filtered at 40 kHz.

Because of the small sample size and the variability of pentolite
blast from shot to shot, the exact shape of the curves is not signiii-
cant, The general trends indicated in the chart are, however, fualt to

be valid.

If one is attempting to measure side-on pressure, a reading of 100%
on Fipure 3.3-16 could be considered zero "error." As the blast wave
approaches face-on, either through improper alignment to the blasc source
or because a raeflection if produced by an off-axis object, the "error"
obtained will be a high reuding. Positive misalignment angle Indicated

in figure 3.3-~16 18 toward face=-on.

Note that the skimmer plate clearly indicates the highest "error"
as it is rotated toward face-on, 1t 1s assumed that the short reller
time of the blunt cylinder mount causes it to have the least "error"
as it is rotated toward side~on.

As misalignment approachi:s a backwards orilentation (negative mils-
alignment angle), all configurations produce penk pressure readings
below the eside-on value, The pencil probe indicates slightly less
"error" than the other two mounte in this configuration. Because of the
small sample size, it 18 not certain that this difference is valid.
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3.3-4 (Cont'd)
Figuraes 3.3-17 through 3,3-21 show the response of the three mounts

to pentolite blast of varying pressure, Note that in figure 3,3-20 and
3.3-21, no skimmer plate data is provided,

Instead, a theoretical pressure versus time curve is presented.
The peak pressure values for the theoretical curves were obtained from
Goodman's equation (ref 7)., The exponential equations for the decay
of the positive peak were obtainad from Brode (ref 8).

Note that the familiar 40-microsecond peak produced by the blunt
cylinder mount becomes more pronounced as pressure level increases.
This result is similar to what was observed in the shock tube shown

previously in figure 3.3-9,
In general, it appears that the pencil probe and the skimmer plate
produce similar curves. The 40-microsecond peak of the blunt cylinder

mount distinguishes itself clearly at higher pressure values, and would
produce a significant error 1f the pressure versus time curve were in-

tegrated to obtain impulse. ‘

At low pressure values, the three mounting techniques produce lit-
tle difference. The pencil probe appears to produce the smoothest wave-

form,
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Each of the mounts described has a pecullar set of strergths and
faults, The following application guide is based on the observations
presented in this section:

a, Pencll probe. Best sulted for applications where the exact
shape of the waveform is ceritical snd the blast source Is well defined
and prosents an easy point for alignment.

b, Skimmer plate. Beat suited for applications where exact shape
of the waveform is still critical and an omnidirectional plane 183 needed
(such as near the muzzle of a gun). The blast source must present some
well defined line for alignment because misalignment n{ more than 5
degrees will cause significant error.

¢, Blunt cylinder. Best suited for measurement in complicated
blast fields where small errors in wave shape are preferable to large
errors caused by unavoidable misalignment. Ideal for low pressure fields,

3.4 SIDE=ON PRESSURE TRANSDUCERS

The following transducers consist of a pressure sensing element
and an integral aerodynamic ojive. The effect of the sensing element
is combined with the flow effects of the ojlve to produce the overall
performance of the transducer. The intent of the ojlve is to facilitate
accurate measurement of side-on pressure.

3.4,1 Celerco Model LC-33 Pencil Cage

The LC~33 pencil gage shown in figure 3,4~1 was formerly manufactured
by Atlantic Reaearch and is now manufuactured by Celesco. This transducer
llay been the standard for blast measurement by the Materlel Testiug
Directorate at APG for at least 20 years.

The low resonant frequency of this transducer makes it unacceptable
by the standards presented in reference 4., Deepite this fact, a number
of experlments werc conducted using the LC-33 transducer in this atudy.
Becauue of the large historical data base that has been collected with
this transducer, it is felt that understanding and analyzing its char-
acteristics are lmportant.,

Figure 3.4-2 shows the side on response of the LC-37 in the USABRL
shock tube, Note the long, slow rise time (50 ua).

The LC=-33 has a cyllndrical sensing crystal that is only 0,635 om
(0,25 {n.) long. It 1is estimated that the shock wave of !['lpure Y,4=2
was traveling approximately 380 m/s. At this velocity, it would only
take 17 mleroseconds to traverse the length of the crystal,
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The 50 microsecond rise time supggests that the transducer construc-
tion 1s such that the effective length of the crystal is approximstely
1.% ¢m, This characteristic would be a distinct disadvantage in meas-
uring hlast waves that bepin a rapld decay immediately after peak pres-
sure is reached, such as the blast produced by small arms. In this sit-
vatfon, tho leny slow rise time of the LC-33 would prevent measurement
of the true peak pressure,

To measure side-on pressure, the LC-33 is pointed toward the blast
source. The cylindrical sensing crystal of the LC-33 produces inter-
esting directional characteristics. It produces a peak pressure indi-
cation of less than true side-on pressure as it is rotated away from
side-on orientation. The LC-33 produces very little error for small
angle misalignment,

The specifications of the LC-33 are listed below:
a. Electronics: Charge type.

b, Crystal: Lead zirconate Titanate.

c. Crystal lenath: 0,635 em (0,25 in.)3.

d. Time constant: pepends on charge amplifier, typically 2
seconds or longer.

e. Acceleration sensitivity: 0,07 kPa/g (0.01 psi/p) (measureu)b.

Due to construction, the effective crystal length is approximately

2 ¢m long.
bThis quantity was not available in the manufacturer's literature, so it

was measured on one sample transducer.

3.4.2 PCB Model 113 Lollipop

The PCB loliipop consists of the acceleration compensated PCB 113
sensing element described earlier placed In a lollipop-shaped ojive.
Detall of the ojive shape is shown in figure 3.4+«3, A photograph of
the PCB lollirop is shown in figure 3.4=4, The specifications of the
PLB lollipop are presented below:

o. FElectronics: Voltare mode,

b, Cryatal: Quarcz,

¢, Resonant frequenev: 500 kHez,

d. Crystal diameter: 5.54 mm,

e. Tlme constant: 10 seconds,
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3.4.2 (Cont'd)
f. Acceleration sensitivity: 0,014 kPa/g (0.002 psi/g).
s,  Change in scale factor with temperature: (Q,054%/°C (0.03%/°F).
Figure 3,4-5 shows the side-on response of the PCB lollipop in the
USABRI. shock tube. Note the sharp peak which indiciates the correct
pressure value, fcllowed by an Indication of slightly below the correct
value,

Figure 3.4-6 shows the PCB lollipop mounted in the field. Figure
3.4-7 shows the'side-on responsa of the PCB lollipop to a pentolite
blast wave. Note that the sharp peak 1s again present.

Like the the akimmer plate, the PCB lollipop is omnidirectional in
one plane but is very sensitive to misalignment out of that plane, Fig-
ure 3.4-8 demonstrates the effect of misalignment on pressure versus
time curves,

Figure 3.4~9 compares the effect of small angle misalignment of
the PCB lollipop and the LC-33 pencil gage., This chart was compiled by

comparing the mean of two pentolite shots in the misaligned configuration

to the mean of five shots in the side~on orientation,

Because of the variability of peatolite and the small sample size,
the exact shape of the curve is not significant., The general treads
indicated in the chart are, however, felt to be valid.

Note that the LC~33 attenuates when misaligned, and is within 5% of
the side-on value for more than +10 degrees, The PCB lollipop is within

5% of the gide-on vilue for only +5 degrees and essentially duplicates
the directional characteristics of the skimmer plate.
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3.4,2 (Cont'd)

Figure 3.4-6, Photograph of PCB lollipop transducer mounted ot
heavy weight blast stand,
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SECTION 4. CALIBRATION TECHNIQUES

4.1 TINTRODUCTION

It 1s rather str.ightforward to determine the sensitivity of an
electrical pressure transducer which has DC response. Very accurate
standards for generating or readiug static pressure are availavle.
Calibration is simply a matter of reading the electrical transducer's
output at a given pressure.

Most blast transducers do not have DC response. Various tech-
niques have been devised to caiibrate these AC-coupled transducers. .
This section discusses four of those techniquas. ¥

4.2 THE SHOCK TUBE

The shock tube can be used for blast experimentation, to check
for proper transducer operation, and to calibrate transducers. Fig-
ure 4.2-1 18 a schematic diagram showing operation of a shock tube.
Figure 4,2-2 1s a photograph of a 10,2~c¢m (4-in.) inside-diameter
shoek tube, Figure 4.2-3 shows a typical plot of pressure versus time ;
from that shock tube. i
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4.2 (Cont'd)

Sensors placed a known distance apart are used to measure the
velocity of the shock wave as It travels down the shock tube. In the
shock tube shown in figure 4.2-2, the sensors are 30.48 cm and 60.96 cm
apart. The Rankine-Hugoniut Equation introduced in section 2.1 is
used to calculate the silde-on pressure level of the shock wave:

7 2
P. - Po 'y (m“~1)
where
P. = Side=-on pressure

Po = Ambient pressure

m = Mach number

v
-

a
where

Shock velocity

<
[ ]

Speed of sound in air

20,09 VY T meters/sec

vhere

T w Temperature in degrees kelvin.
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4.2 (Cont'd) .
It should be pointed out that the Rankine-Hugoniot Edquation be-

comes very sensitive to measurement errors at low pressures. Tables
4.2-1 and 4,2-2 1llustrate this fact.

Table 4.2-1, Measurement errora that will cause a 1% error in
calculated side-on pressure level. P, = 101.35 kPa (14.7 psi),
0o = 20° C (68° F), a = 343,979 m/s, velocity gage base length
L = 30.48 cm (12 in.). .

TABLE 4.2-1. MEASUREMENT ERRORS
Pressure Level

15 kPa 35 kPa 70 kPas
(2.18 psi) (5.08 psi) (10.15 psi)

Ttem
Time T to cross baseline 834.7 778.4 702.3
(microseconds)
AT for 1% crror 0.5 0.9 1.3
(microseconds)
AL for 17 error (mm) 0.17 0.35 0.57
A8 for 1% error (°C) 0.33 0.67 1.09
AP, for 1% error (kPa) 1.01 1.01 1.01

Table 4.2-2, Measurement €rrors that will cause a 1% error in
calculated side-on pressure level. P, = 101.35 kPa (14.7 psi),
8o = 20° C (68° F), a = 343,979 m/s, velocity gage base length

L = 60.96 cm (24 in.).

TABLE 4.2-2. MEASUREMENT ERRORS

Pressure Level

15 kPa 35 kPa 70 kPa
Item (2.18 psi) (5.08 psi) (10.15 psi)
Time T to cross baseline 1669, 4 1556.8 1404.6
(microseconds)
AT for 17 error 1.0 1.8 2.6
(microseconds)
AL for 1% error (mm) 0.34 0,70 1.14
48 for 1% error (°C) 0.33 0.67 1.09
APo for 1% error (kPa) 1.01 1.01 1.01
94
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Four measurements are required to calculate the side-on pressure
of a shock wave: baseline length, transit time, ambient temperature,
and ambient pressure. From the tables above, it Is obvious that am-
bient pressure {s the least critical of the four measurements. Precise
lengih measurement iy also rather stralght-forward.

The critical measurements are air temperature and transit time.
Low thermal mass thermocouples and elimination of thermal gradients
are required to obtain accurate alr femperature measurements,

Note that timing accuracies on the order of 1 microsecond are
required. Counters are readily available which have 0.1 microsecond
resolution, The critical matter is triggering the counter.

Most transducers have a 10-microsecond rise time., Both the start
and the stop trigge=ing circuits must be adjusted to function at the
same point during thelr respective 10-microsecond rise times.

The shock tube provides an excellent means of testing dynamic
response of a transducer. Flow problems and anomalies in the prersure
versus time curve, such as overshoot and ringing, are immediately
apparent. -

Shock tube calibration of transducers has two disadvantages:
first is the sensitivity to measurement errors presented in the
tables above, and second is the difficulty of determining which point
(to within 1%) on a signal such as figure 4.2-3 corresponds to the
calculated pressure level.

4.3 THE STATIC PULSE CALIBRATOR

Figure 4.3-1 shows a simplified schematic describing the theory
of the static pulse calibrator. Pressurized air 1s stored in a large
tank. The air pressure level can be accurately measured with a static
pressure gage.

The test transducer 1s connected to a 3-way, quick-acting alve
that normally exposes the transducer to amblent atmospheric pressure.
When the valve is actuated, the transducer 1s exposed to the pressure
in the large tank. The valve 1s designed so that the volume change
caused by exposing the transducer to tank pressure is negligible.
Therefore, the transducer is exposed to a pressure step equal to the
pressure level indicated by the tank static pressure gage.

Figure 4.3-2 18 a photograph of a commercial static pulse cali-

brator. Unfortunately, the large tank is not visible in this photograph.

The large tank 1s behind the wooden panel which holds the gages and
controls, Figure 4,3-3 1s a typical pressure versus time signal
produced by the static pulse calibrator.
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Measurement of the exact calibration pressure level 1s very accu-
rate when using the static pulse calibrator. Unfortunately, acoustlc
resonance (n the plumbing of the calibrator causcs ringing in the
transducer signal. This ringing makes 1t df{fficult to determine the
exact output tevel of the transducer for a glven preszure level,

The static pulse callbrator can be used to examine low tfrequencey
characteristics of transducers, Filgure 4,3-4 shows the response of
the Endevco gage to a static step. Because the Endevco gage has DC
responge, the correct step function {s produced.

Note that the rise time shown in figure 4.3=4 ls shorter than the rise
time shown in figure 4,3~3. Rise times shorter than 5 millisaconds exhiblt
acoustic ringing in this particulatr static pulse calibrator. The speed
with which the manually actuated 3-~way valve is opened affects the risc
tlme,

Figure 4,3~5 shows the response nf the PCB gage to a static atep,
Note that Lecause this gape is AC-coupled, the signal immediately
begins an exponential decay. This exponential decay cun be described
by the period required to decay from peak valuce to 377 of that value.
This perlod is known as the time constant of the gage.

The ST-2 gage has a much shorter time congtant than the PCB gage.
Figure 4.3-6 ghows the response of the 8T-2 gage to a statlc step.
Note that the short time conastant causes rapid decay. The rapid decay,
combined wilth acoustlc ringing, make accurate astatic pulse calibration
of the ST-2 gage difficult,

Another problem introduced by the static pulse calibrator is the
thermal effect of adiabatic compression, When the small volume of
alr in the quick-acting valve 18 compressed from ambient pressure to
the calibration pressure level, the alr is also heated., This same
thermal effect 1s present when a shock wave compresses air; however,
the duration of the compression caused by a shock wave is very short
as opposed to the statle calibration pulse, which (s a stoeady state
change.

The change (n temperature caused by adlabatic compression s
calceutated as shown below:
Pl Pl k=1
e wf—
T P k
o 0
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; where
T” = Ambtent temperature (absolute)
'l‘l = Temperature after compression (absolute) %
P, = Ambient pressure (absolute)

% P1 = Pressure after compression {(absolute) §

k = 1.4 fer air.

R
B g el L

Air compressed from laboratory conditions of 1 atmosphere and

20° C to 1.5 stmospheres (an overpressure of 50.7 kPa = 7.35 psi) will 4
experience a temperature increase of 36° C. Figure 4,3-7 shows how 4
the thermal effect of adiabatic compression can be reduced by a layer ;
of black electrical tape. i
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4.4 STINUSOIDAL PRESSURE CALIBRATION

Fipure 4.4-1 s a simpllfied schematic diagram describing the

operating principle ot a commercial high=intensity wmicrophone callbrator,
This unit s essentlally an enclosed loud speaker.  An electrical sine !
wave fnput to the coll causes the piston to senerate a sinusoldal pres-

sure variation, i,

g A calibrated resistor 1s used to monitor the input rurrent to the ‘;
3 coil and produces a calibrated electrical output that i{ndicates the 3
f magnitude of the pressure that the transducers are sensing, TFigure

; 4.4-2 is a photograph of the calibrator and a locally fabricated power b
; unit. Figure 4.4-3 is a typical transducer output signal produced

by the calibrator at 100 Hz,

: Figure 4,4-4 shows the electrical schematic diagram of a power

3 unit that wae bullt to drive the calibrator. 1Its operation is de=
scribed below, The letters in parentheses refer to the large capital
letters in the dlagram.

The power unit has three modes of operation:

I. Manual Modet: The signal from a 100 Hz oscillator (A)

is adjusted by the "manual gain adjust" potentlometer and
drives the power ampliffier (B), which provides up to 1.5 amps
required to drive the calibrator.

T ‘.-'5m=¥:-m’ Ll i

II. External Modet: The signal from an external oscillator
drives a variable gain amplifier (C), which drives the power
amplifier (B). ‘

H TI1. Self Adjust Mode: The calibrator provides an accurate
f monitor voltage at the "voltmeter jack' which 1is proportional
- to pressurce (20 Pa = 1 mV). The power unit shown in Figuru oy
4.4-2 has been adjusted to maintain 121.9 mV RMS at the !
"voltmeter" Jack which corresponds to 2,44 kPa RMS or 1 psi

peak-to-prak.

The AC signal from the "voltmeter" jack (s converted
to a DC voltage (D). This voltage is compared to the
desired reference level by a scrvo amplifier. Anv resulting
error signal drives an integrator (E). The Integrator '
controls the gain of a 100 Hz slne wave by use of a multi- i
plier (F), which in turp, drives the power amplifier (B).

When used in the "Self Adjust Mode,'" the proportlonal focedback
servo aystem is underdamped (L.e., it has overshoot). ‘The outpul
settles to within 1% tolerance of the desired value In 1 evele, which

is approximately 4 seconds long.
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FROM
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Figure 4.4-4. Electrical schematic dlugram of p!
wave calibrator.
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A tolerance LED (G) is illuminated when the '"voltmeter" signal
is within 1% of the desired level. The upper tolerance potentiometer
(H) and lower tolerance potentiometer (I) must be periodically checked
and ad jusced to perform this function. The level adjust potentiometer
(1) should be adjusted 1f the desired pressure level 1s not being
maintalined.

Anv time it 1s necessary to monitor the signal at the "voltmeter"
jack, a voltmeter completely isolated from ground must be used. Other-
wise, ground loops will cause a variation in the pressure level gen-

erated, and the vrelationship between pressure and voltage (20 Pa = 1 mV)

will no longer be valid.

The transducer signal produced during sine wave calibration can
he accurately read with a voltmeter or digital transient recorvder.
The calibrator is portable, so on-site calibration can be performed.
Berause calibration is performed well above the low-frequency rolloff
point, the time constant of AC-coupled transducers does not affect
calibration,

The fact that sine wave calibration is conducted at a relatively
low level (2.4 kPa RMS) introduces several problems. This level is
often at or below the low amplitude limit of the transducer's pressure
range, which means the signal to noilse ratio may be small.

Transducer nonlinearity becomes a problem at low pressure levels,
A transducer with a full scale range of 500 kPa for example, could
have a linearity error of 2.5 kPa at its low range. This error rep~
resents an error of only 0,5% of full scale, but represents an error
of 50% to 100X of the reading at the low range used in sine wave
calibration,

It has also been discovered that the small plece of electrical
tape used for thermal protection of the transducer can cause errors
in low level sine wave calibration. This is particularly true if the
tape 18 old and not sticking well.

4.5 PENTOLITE CALTBRATION

Figure 4,5-1 shows a 454-gram (1-1b) bare spherical charge of
pentolite being ) repared for detonation. Goodman has presented (in
ref 7) an empirically fit equation to predict the peak pressure level
produced by a given charge of pentolite at a given distance. Flgurc
4.5-2 shows the variation of peak pressure and the author's conversion
of Goodman's equation into ST units.

Figure 4.5-3 shows a typical plot of pressure versus time from a
pentolfte explosion., On very rare occasions, strange waveforms, such
as the signal shown in figure 4.5-4 are produced. 1In almost 400
observations, strange waveforms like the one shown were observed three
times.
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Table 4.5-1 ghows typical shot-to=shot variation ohtained with
pentolite. Note that at low pressure levels, the varlatlon of arrival
times correlates well with the variation of indicated pressure. At
higher pressure levels, however, varlations In arrival time do not

correlate with wvariations in indicated pressure.

Sectlon 4.7 will

address discrepancies between the indicqtad pressure levals and those
caleculated from Goodman's equation,

TABLE 4.5-1,

PEAK PRESSURES AND ARRIVAL
TIMES OBSERVED FROM DETONATION OF
479 GRAM PENTOLITE SPHERES

Distance Peak Pressure Arrival Time
(m) (kPa) (ms)
5.42 2.1 10.55
5.42 21,7 10.61
5.42 21,2 10.69
5.42 22,1 10.46
4,39 29,1 7.900
4,39 29,9 7.906
4,39 29.9 7.931
4,39 30.7 7.769
3.19 48,5 4,906
3.19 49,4 4.806
3.19 48,2 4,900
3.19 49,2 4.763
2.684 68.6 3,500
2.64 67.2 3.575
2.64 67,1 3,531
2.64 63.7 3.481
2.17 97.2 2,416
2.17 98.6 2.581
2.17 99,3 2,556
2.17 104,8 2,556
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4.6 COMPARTISON OF LAMORATORY CALIBRATION TECHNIQUES

Three of the calibratfon techniques previously discussed can be
performed {n the laboratorv: Shock Tube, Sine Wave, and Static Pulse,
Table 4,6-1 shaws the results of these three different technlques on
10 ST-2 gapes.

Since any one of these techniques could be used alone to calibrate
a transducer, it is disappointing to see such large dlscrepancles be-
tween the various techniques, Although three of the gages produced
quite consistent readlngs, the mean extreme spread observed was 4,87,

Table 4.6-2 shows before fire and after fire calibration data
from seven PCB gages and eight other transducers., The mean extremc
spread observed was 4,5%.,

These two tabhles lead one to the disappointing concluslon that
laboratory tests are seldom more accurate than 5%, Hand~picking
tranaducers can improve this accuracy.

Laboratory tests are conducted in much more favorable conditions
than field tests., Amblient temperature change, long cables, acceleration
of stands, rain, mud, etc., can all be expected to cause errors that
are added to the 5% calibration error,

TABLE #.6~1., COMPARLSON OF VARLOUS LABORATORY CALIRRATIONS
OF 10 DIFFERENT $7-2 GAGES, SENSITIVITY OF
TRANSDUCERS EXPRESSED IN MV/KPA

GAGE
SERIAL STATIC SINE SHOCK EXTREME
NO. PULSE WAVE TUBE MEAN SPREAD (%)

1481 20.7 20,5 20,7 20,6 1.0%
2104 16.4 15.8 16.7 16.3 5.5%
2262 17.4 16,9 17.1 17.1 2.9%
1262 25.8 23,6 25.3 24,9 8.8%
2267 20.7 20,3 21.8 20,9 1.27%
2106 15.3 15.0 16.1 15,5 7.17%
2103 21.3 21.0 211 21.1 1.4%
20913 15.1 14.9 16.3 15.4 9.1%
2094 16.6 16.2 16.7 16,5 .07
2091 16.1 15,8 15.8 15.9 1.9%
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TABLE 4.6~2. COMPARISON OF BEFORE AND AFTER FIRE CALIBRATLON
DATA FOR A VARIETY OF TRANSDUCERS. SENSITIVITY OF
TRANSDUCERS EXPRESSED IN MV/KPa

BEFORE PIRE AFTER FIRFE
CALIBRATTION 13-19 AUG  CALIBRATION 25-29Al0

CAGE TYPE STATIC| SINE |SHOCK [[STATIC|SINE {SHOCK EXTREME

& SERIAL # PULSE |WAVE | TUBE [|Punse |wave | TUBE || MEAN |SPREAD (%)
PCB # 2174 9.51 | 9.54] ~ 9.46 | 9.70! 9.53]| 9.55 2.5
PCB #f 2178 10.08 | 9.96 - 10.05 110,21} 9.86| 10,03 3,5
PCB # 2179 1.41 | 7.51] 7.9 7.30 | 7.09] 7.30l 7.38 8.1
PCB # 2180 8.57 | 8.67( 8.61| 8.60 | 8.50] 8.54] 8.58 2.0
PCB 4 2181 8.64 | 8.66| 8.48]| 8.47 | 8.64| B.92| 8.64 5,2
PCB # 2182 8,03 | 8.18] 8.03| 7.88 | 7.92| 7.96|| 8.00 3.8
PCB # 2184 7.11 | 7,220 7,11 ) 6.95 | 7.22] 6.90) 7.09) 4.5
§T-2 # 1481 19.9 |20.0 | 19.7 [l20.7 [20.0 | 19.4 || 20.0 || 6.5
ST-2 # 1482 19.7 |20.2 | 18,6 |[20.0 [19.4 | 18.6 || 19,4 | 8.2
LC-33 # 99 400 - 387 - - - ljsos | 3.3
LC-33 # 104 435 - Ja20 - - - fleas ] 35
LC-33 ## 667 417 - |407 - - - a2 | 2.4
L6~70 # 737 15.8 [15.8 | 14.5 - - - 15,4 | 8.4
Le-70 # 719 || 15.5 [16.,2 | 15.5 - - - 157} 4.5
Endevco # EG-56] 57.4 |58.0 - - - - 57,70 1.0

4,7 COMPARISON OF PENTOLITE CALIBRATION WITH LABORATORY CALIBRATTON

Many different transducers were calibrated in the laboratory,
using the shock tube, sine wave calibration, and static pulse cenll-
bration. These transducers wore then placed Iin a pentolite blast
field to measure peak pressure,

Blast wave veloclty was also measured, as well as amblent tem=
perature and pressurc. The velocityv measurements and the Rankine-
Hugoniot Equatlon were used to caleulate peak pressure levelw,

Two typed of probes were used to make veloceity measurements.
One probe had three PCB transducers with 30,48-cm (1-ft) spavings.
The other probe used two LC~70 transducers 45.72 cm (18 In.) apart,
Flgures 4.7-1 and 4.7-2 show the probe which used 1.C~70 transducoers.

Tahle 4.7-1 presonts the results, comparing the transducer
measurements, velocelty measurements, and caleulation of peak pressure
from Goodman's equation (ref 7). Note thot at Tow pregsure lovels
(20 kPa), the transducer measurcments Indlcate peak pressures roughtiy
10% higher than the enleulated peak pressures. The veloelty measnre-
ments alsc indlicate higher peak prossure levels than the cquat lon
predicts. At higher preasurc Tevels (70 kPa and 100 kPa), aprecement
{4 much bettur,
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4,7 {Cont'd)

TABLE 4.7-1.

COMPARISON OF PRESSURE AND VELOCITY MEASUREMENTS WITH

PREBICTIONS FROM GOODMAN'S EQUATION FOR PENTOLITE EXPLOSIONS. BARE
SPHERICAL CHARGES WEIGHING 479 GRAMS WERE USED.

L ‘p
W MEASUREMENTS MADE AT A NOMINAL 20 KPa LEVEL
SCALED MEAS MEAN
DISTANCE THEO PK PK PRESS
N cn (M/Kg 1/3) (KPa) (KPa) % ERROR
4 ST-2 1 7.23 19.2 23.4 21.9 DLRECT
5 ST-2 2 7.23 19.2 21.3 10.9 PRESSURE
5 | PCB 3 7.05 19.9 21.7 9.0 MEASUREMENTS
5 PCB 4 7.03 20.0 20.1 .5 _
5 | Lc=335 7.09 19.8 20.8 5.1 X = 10.8
5 PCB 6 6.56 22,2 25,0 12.6
4 PCB 6' 6.9¢€ 20.3 26.5 20.7
4 | PcB T 6.94 20.4 21.7 6.4
5 PCB 8 7.34 18.8 20,0 6.4
5 { LC-6 9 6.90 20,6 22,8 10.7
5 | Le-6 10 7.48 18,3 20.1 9.8
4 PCB Loliipop 11' 7.13 19.6 22.7 15.8
START sTOP MID PT VEL MEAN % ERROK
DISTANCE DISTANCE THEO PK PK PRESS
N (METERS) (METERS) (KPa) (KPa)
VELOCITY
5 5.14 5.44 21.2 21.4 .9 MEASUREMENTS
5 5.464 5.75 19.6 21.8 11.2 X = 7.1
5 5.14 5,75 20.4 21,7 6.4
5 5.39 5.85 19.4 21,3 9.8
MEASUREMENTS MADE AT A NOMINAL 30 KPa LEVEL
SCALED MEAS MoAN
DISTANCE | THEO PK PK PRESS
N CH (M/Kg 1/3) (KPa) (XPa) % ERROR
5 1 5,67 27.8 32.9 18.3 b
5 2 5.53 29.0 30.2 4.1 péggggRE
5 3 5.61 28.3 32.7 15.5
5 4 5.49 29.3 30.5 4.1 MEASUREMENTS
5 5 5.55 28,8 29.9 3.8 X = 8.9
5 6 5.14 32.7 37.5 14.7
4 6' 5.61 28.3 31.5 11.3
4 7 5.61 28.3 30.0 6.0
5 8 5.92 26.0 27.7 6
5 9 5,57 28.6 29.1 1.7
5 10 6.15 24.5 26.5 B.2
4 11’ 5.66 27.9 31.4 12.5
START STOP MID PT VEL MEAN
DISTANCE DISTANCE THEO PK PK PRESS :
N (METERS) (METERS) (KPa) (KPa) % ERROR
5 4.02 4.33 30.7 30.5 -,7 VELOCITY
5 4,33 4.63 27.4 29.8 8.8 MEASUREMENTS
5 4,02 4.63 29.0 30.4 4.8 X = 5,3
5 4.6 4.82 26.4 27.8 5.3
2 4.3 4.79 L==:2£;_‘ 28.9 8.2
il======
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t
; MEASUREMENTS MADE AT A NOMINAL 50 KPa LEVEL
:z SCALED MEAS MEAN
DISTANCE THEO PK PK PRESS
N CH (M/Kg 1/3) (KPa) | (kPa) % ERROR
I— 6 1 N 4,08 49.9 56. 1 12.4  DIRECT
5 2 | " " 51.2 2.6  DRESSURR i
6 3 n " 54,9 8.0 MI?IT\'JL REMENTS
5 4 " " 51.4 3.0 X = 4.1 +
5 5 " " 53.2 6.6
4 6' 4,07 49,4 50.6 2.4
4 7! " " 48.8 -1.2
2 11 L 4.06 49,6 49.2 -.8
START STOP MID PT VEL MEAN
DISTANCE DISTANCE THEO PK PK PRESS l
N (METERS) (METERS) | (KPa) (KPa) % ERROR
3 3,08 i 3,564 ’ 46,1 [ 50.8 | 10.2
MEASUREMENTS MADE AT A NOMINAL 70 KPa LEVEL
SCALED MEAS MEAN
DISTANCE THEO PK PK PRESS
N | CH || (M/kg 1/3) | (KPa) | (KPa) | 4 pRRor
DIRECT
2 6: 3,37 71.5 71.6 L PRESSURE
7' 3.37 71.5 66,7 ~6.7 MEASUREMENTS
3 11 3.49 66,6 69.6 4,5 3 .
2 -,
_ :d
MEASUREMENTS MADE AT A NOMINAL 105 KPa LEVEL
SCALED MEAS MEAN
DISTANCE THEO PK PK PRESS DIRECT
N CH (M/Kg 1/3 (KPa) KPa
8 ) (KPa) % ERROR PRESSURE
4 6! 2.78 107, 3 98,3 -8.4  MEASUREMRNTS 1
4 A 2,78 " 100.0 -6.8 X = -8.9 ]
2 11° 2.77 108,2 95.8 -11.5 il )
L - 4
LEGEND: N= Number of shots at stated locatlon. CH= Channel number.
SCALED L | ?
DISTANCE Distance from charge/(Mass of charge) 3 = Distance from charge/0,7824 ﬁ
THEQ PK= Peak side-on overpressure calculated from Goodman's equation. %
MEAS MEAN
PK PRESS Mean of N peak side-on pressure measurements made at stated location,
START _ [
DISTANCE Distance from charge at which the blast wave starts a timer. ;
i
STOP Distance from charge at which the blast wave stops a timer .
DISTANCE ' ,
MID PT ,
THEO PK ™ Peak side-on ovevpressure calculated from Goodman's equatinn 4
at a point midway between stop and start distance, ;

VEL MEAN _ Peak side-on overpressure obtained using velocity trom timer and
PK PRESS the Rankine-Hugoniot equation. Mean of N shots.
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The reason for discrepancy at the low pressures is not fully
understood. There are several possible causes. Differences between
field testing conditions and laboratory conditions, such as ambient
temperature, acceleration of the transducer stands, etc., may be
responsible for the difference,

The particular lot of pentolite used may have been unusual. The
explosives technician who cast the spheres noted that this lot required
twice as long to melt as brand new pentolite normally requires.

This characteristic is not thought to be irregular. It occurs
any time pauntolite is "recycled" (i.e., cast, shredded, and recast).
The explosives tachnician did not feol thut "recycling" affects the
explosive properiies of pentolite.

Goodman's equation has been the foundation for much of the blast
work in the last 20 years. Many investigators have confirmed his
work. It would be unwlse to conclude that Goodman's equation is in
error by 10X, bared on one set of observations, It would seem
equally unwise, however, to continue to use pentolite as a calibration
technique until the observed discrepancies have been resolved.
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SECTION 5. EXTRANEOUS FFFECLS

Blast overpressure transducers often measure events not related to
pressure, such as acceleration dand thermal transients. Testing con-
dittons, such as ambient temperature, transducer mount ing, and choice of
test site also affect the measurements.  Thils section descrlbes varlous
vbservations and experlments conducted to investigate these extrinvous
effeces,

5.1 ACCELERATION ERROR USING A MINIATURE TRANSDUCER

Figure 5.1~1 shows a PCB transducer mounted on a lightweight stand

and covercvd with a metal cap, The cap is sealed with a toflon-coated
nut to prevent pressure from reaching the transducer,

Figure 5,1-2 shows the output of an accelerometer mounted to the
stand when {t is struck by a pentolite blast wave. Note the low fre-
quency oscillation at about 40 Hz that occurs after the stand has been
struck by the blast wave. It is assumed that this oscillation is
caused by stand whip.

Figure 5.1-3 shows the output of the transducer when it is not
covered, Note that the peak pressure level 1s approximately 30 i Pa,

Figure 5.1-4 shows the output of the covered transducer. Note
that if there 18 any 40 Hz signal caused by stand whip, it 1s below the
ambient electrical noilse level, The peak '"apparent pressure" is 3 kPa
or 10% of the actual pressure level present.

Figure 5.1-5 18 an expanded view of the signal from the transducer
when 1t 1is not covered. Note the two distinct peaks caused by the
incident wave and the ground reflection.

Figure 5.1-6 is an expanded view of the accelerometer mounted to
the stand. Note the two distinct envelopes corresponding to the Laci-
dent wave and the ground reflection striking the stand. Oscillation in
the first envelope is approximately 30 g at 11,000 Hz.

Figure 5.1-7 18 an expanded view of the output of the covered
transducer., OUOnce again, two distinct envelopes are prescent, Note the
oscillations are now at 16,000 Hz rather than 11,000 Hz. This shot was
fired without the mass of the accelerometer and its clamping hardware
attached to the stand. It is assumed that this reductlon of mays caused
the higher resonant frequency.
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Just as removal of the accelerometer and clamplng hardware in-
creased the resgonant frequency, it is assumed that the acceleration level
was also Increased. A crude method of estimating the Increased accelera-
tion level Is to multiply by the ratio of the frequencles:

wol = 16,000, .
Estlmated Acceleration Level 30 g (ll 000) 45
In figure 5.1-7, oscillation in the first envelcpe is approximately

0.7 kPa. The acceleration sensitivity, therefore, is:

0.7 kPa

g = 0016 kPa/g

The manufacturer advertises an acceleration sensitivity of 0.014 kPa/g
for this transducer.

It should be noted that the covered gage produced a signal that was
approximately 9% of the level measured by the uncovered gage. This
result emphasizes that acceleration can cause signiflcant error, and
that careful attention ahould be given to isolating the transducer from
acceleration,

5.2 ACCELLRATION ERROR USING THE LC-33 PENCIL GAGE

Figures 5.,2-1 through 5.2-4 show the steps of preparing and in-
stalling the LC=33 pencil gage in heavyweight blast stands. Note
partlcularly the two rolls of rubber tape used to support che transducer
in the stand.

These pleces of rubber support the gage in the blast stand., They
also isolate the transducer from high frequency vibration. As described
below, these pleces of rubber can also cause problems,

Figure 5.2~5 ghows the response of a properly mounted LC-33 gagpe to
a pentolite blast wave, Contrast that signal with the signal shown in
figure 5.2=-6 which ia the response of an improperly mounted LC~33 wape.

Filgure 5.2=7 18 the response of the same Improperly mounted trang-
ducer when 1ts sensing element was covered. ‘lote the osclllation at
approximately 240 Hz, The amplitude of these osclllations 18 almost
10% of the actual pressure level, Thig transduccer was found to be loose
in the blast stand, and would vibrate Lf tapped by hand.

Flgure 5,2=-8 shows acceleration measured on a heavywelght blast
stand, Note that hlgh frequency acceleration {8 present. None of this
high [frequency acceleration appears on the slgnal from the transducer,
Indicating that the rubber did effectively 1solate the trunsducer from
high frequency acceleration.

Note also that no low frequency acceleratlon (stand whip) is
present. 'The heavywelght swtand {s apparently rigid cnough that stand
whip Is eliminated.
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5.3 ACCELERATION ERROR IN VEHICLES

Figure 5,3-1 shows an example of a field measurement that was
rulned by acceleration. This measurement was made with an ST-2 gage
mounted on a stand which was attached to an armored personnel carrler,

Arrival of the first blast wave is Indicated by a high amplitude
pressure with a short rise time. Note that apparent deviations fcum
ambient pressutre begin before the first blast wave arrives.

These signals are assumed to be ruused by acceleration of tlie mor-
tar transmitted through the f..me of the armored personnel carrier to
the transducer. Because the acceleration waves travel through metal
much faster than blast wavex travel through air, the acceleration reaches
the transducer before the “iust wave. Note that additional acceleration-
induced signala are produced at the end of the record.

Figures 5.3=2 and 5.3-3 show an "A" frame structure that was bullt
to support the transducera, This structure permits accurate placement
of the transducers without any contact betwszen the vehicle and the

transducer support system.

Figure 5.3-4 shows a blast measurement made using the "A" frame
structure. Note that no extraneous acceleration signals are present,
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5.4 EFFECTS OF AMBIENT TEMPERATURE

Variations In amblent temperature occur in field measurcments
during the test day. During winter and summer testing, there 1ls a
dramatic difference between the fleld measurement temperaturce and the
laboratory temperature where calibratlon of transduccers (s performed.

A laboratory experiment was conducted to determlne the eflect of
ambient temperature on senaitivity (output/unit pressure) of various
transducers. The tranaducers were placed in the statle pressure pulse
calibrator and heated or cooled to various temperatures, Figure 5.4~1
shows the results of this experiment.

It was necess"ry to complete the testing of wach transducer in one
8-hour day. The transducers were not permitted to remain at one tempera-
ture long enough to eliminate all thermal gradients. A special fixture
had to be cunstructed to use the LC-33 pencil gage in the pulme cali-
bvwator, It is assumed that thermal gradients in thie fixture caused the
very strange shape of the LC-33 curve in figure 5,4-1,

a4

Because of the thermal gradients present, it 1. felt that the exact
shape of any of the curves in figure 5.4-1 i{s not meaningful, The
general trends of the different curves are, however, felt to be valid,

The temperature~compensated strain gages in the Endevco gage were
far less sensitive to temperature change than the various crystals,
The man-made crystals (lead metaniobate in the 8T-2 and lead zirconate -
titanate in the LC~33) were more sensitive to temperature change than A
the natural crystal (quartz in the PCB gage). . L
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5.5 EFFECTS OF THERMAL TRANSIENTS

Figure 5,5-1 <hows a blast measurement made in a4 vrew logation
duriny {irlng of a 10W missile, Flgure 5.5-2 shows a measurement made
in the same location with the Lavncher slipntly rotated.

In this second case, exhaust gages from the rocket caused a thermal
trandient large enouga to affect the pressure measurement. Locatlons
close to the muzzle ol a large caliber artillery niene have produced
similar thermal transient problems,

To further illustrate the sensitivity of pressure transducers to
thermal transients, a technique suggested by the National Bureau of
Standards (ref 9) was used., Figures 5.5-3 and 5.5-4 show the response
of a silicon photo-diode placed 22 cm in front of an electronic flash
and a Sylvaula No, 2 flashbulb (equivalent to the GE Mo, 22 flashbulb

discussed in rel 9),

Note .hat the integral, which {s proportional to energy, of the
flashbuib curve 1is roughly 10 times larger than the integral of the
electronic flash curve., This indicates that ip the near infrared spec=-
trum to whicl the silicon photo-diode respond:s, the flasnbulb produce.

1G times as much energy.

ifigures 5,5-5 and 5.5-6 show the response of the PCB gage and the
ST=-2 gage to the electronic flash, 22 cm from the transducer. Note that
placing a layer of black electrical tape and a layer of aluminum-co~t.l
~ylar tape over the transducer reduced the thermal translent regponse of
both transducers dramatically.

Figures 5.5-7 and 5.5~8 show the respouse of the PCB nage and the
ST-2 gage to the No., 2 flashbulb. Note that thc response of ovoth trans-
ducers is roughly an order of magnitude greater thrn their response to

the electronlc flagh.

The quartz crystal in the PCE transducer is surrounded by stalnless
steel, When the end of the transducer is heated by the thermal transient
it expands, pulling on the crystal. This tension on the crysLu} o
electrically interpreted as a pressure rarcfaction or "negative' pros-

sure.
The leud metaniobate crystal in the ST-2 gage is mounted in staln-

less steel but covered with a nylon cap. The thermal coefficient of
expansion of nylon is ru.ghly five times larger than vhat of stainlesy

steel.
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Heating the nylon cap caused it to expand more than tlie surrounding
stainless steel. This differentisl expansion pushes on the crystal,
Compression of the crystal is electrically interpreted as positive pres-
sure,

Note that the unprotected ST-2 gage has roughly five times the
thermal tranalent response of the PCB gage, When both transducers arc
protected, their thermal transient response is about the same,

The flashbulb produces a rather intense thermal transient, much
more severe than would normally be encountered in testing. Certain test
situations, such as shaped charge penetration of an armored vehicle, do,
however, produce very large thermal transients.

It should also be mentioned that preliminary experiments with the
Endeveo gage produced immediate full scale deflection whuen it was sub-
Jected to any kind of flash. This result 18 caused by the fact that
the diffused silicon diaphragm in the Endevco gage is photosensitive.

Because the Endavco gage 1s so sensitive to light, the technique
described above could not be used to test its sansitivicy to thermal
transient, Other experiments, such as immersing the tiansducar in water
at different temperatures, indicated that the Endevco gage had very
little remponse to thermal transients that did not produce light.

An informative discussion of thermal sensitivity of transducers
and ways to reduce thermal sensitivity can be found in a otudy conducted
at the National Bureau of Htandards (ref 13). Additional information
can be found in a study conducted by Cuulter at the US Army Ballistic
Resaarch Laboratory (ref 11). '

5.6 THERMAL DRIFT IN FIELD MEASUREMENTS

When the transducers discussed in this report were used to measure
very small pressures (v 2 kPa), very small thormal gradients can causa
problems., Changes in temperature causcd by a small breeze conling the
transducer, or the sun going behind a c¢loud cause very mlnor contractlon
and expansion of the transducer housing.

If the inastrumentation time constant is long and the pressure level
is small, measurements Buch as the example shown in figure 5.6-1 cun
result, The fact that any measurement at all was obtained tends ‘o
understate the situation that day,
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5.6 (Cont'd)

The charge amplifier output would drift first in one direction,
and then In the opposite direction, sometimes alowly, sometimes rapidly.
At the time the round was fired, the charge amplifier was being reset
to zero every 1/2 second. The fact that the pressure wave did not ar-
tive while the amplifier was being reset was purely chance.

The signal conditioning for all crystal type transducers is AC-
coupled, By changing the low-frequeacy rolloff characteristlcs of the
signal coendicioning, thermal drift can be filtered out, There 18 a
danger, however, that this filtering will also distort the pressure

measurement .

R

An experiment was conducted by artificially changing the low-
frequency rolloff characteristics of several transducers. The relation~
ahip batween time constant and low-fraequency rolloff is:

AT -
S

0.16
fo = ¢

ST Y

where

'fy = rolloff fraquency (-3 db down point) in Hz.
TC = time constant in seconds,

”; Transducers with different time constants were used to measure
! muzzle blast 100 meters from a 105-mm tank gun, The results are shown
in figures 5,6-2 through 5.6=6 and summarized in table 5.6-1,
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5,6 (Cont'd)
TABLE 5.6-~1, SUMMARY OF THE RESULTS OF ROUND 6, 5 JULY 1979

. mem e s et

Low
Frequency Time Peak
: Rolloff Constant Pressure A-Duration

Channel Tranaducer (Hz) (sec) (kPa) (ms)

N 6 LC~33 pencil gage 0.08 2 - 14,00
£ 7 PCB 106B 0.16 1 1.61 13,78
; 9 PCB 112A21 1.6 0.1 1.90 13.00
s B8 PCB 106B 16 0.01 1.51 9.24
1 B&K microphone 30 0.005 1,63 4,12

A mathematical model of an RC high-pass filter with a 6 dB/octave
rolloff rate was constructed. A waveform similar to a blast wave waas
mathematically generated. This simulated blast wave was used as in
input to high~pass filters with various rolloff frequencies.

The resulte of this mathematical exercise are shown in figure 5.6-7.
These mathematical results agree quite well with the experimental
results from round 6. Note the large discrepancy between the original
waveform and the reaponse of a circult with a 30 Hz rolloff frequency,
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5,7 EFFECTS OF TEST SITE LAYOUT

The test site should be an open, flat area, clear of obstacles,
Exactly how far the nearest obstacle can be to the transducers depends
on the blast source. The following example illustrates how test site
layout can affect blast measurements.

Figure 3.,7-1 18 & scale drawing of a layout that was used to make
some measurements of the muzzle blast of the M198 howitzer., Note the
proximity of the bombproofs (for test crew protection) to the weapon.
Figures 5.7-2 through 5.7-4 are photographs of the test site,

Figures 5.7=5 through 5.7-8 show the outputs of the four transducers.
This test produced two interesting observations:

a. Reflections from the bombproofs were occasionally greater than
10% of the peak pressure and therefore affected "B" duration.

b, In some cases, the peak pressure measured by the LC-33 pencil
gage was caused by the ground reflection, whereas the peak pressure
measured by the ST-2 gage was always caused by the initial blast wave.

In reference to observation No., 1, note the pressure pulse that
appears 84 milliseconds after the primary wave on channels 1 and 2, and
appears 88 milisaconds after the primary wave on channels 3 and 4. This
pulse seems to be caused by reflection from bombproofs 2 and 3, as
shown in figure 5.7-1, The following calculations confirm that sus-
picion:

Distance from muzzle to bombproof 2 and 3 '
and back to CH 1 and 2 123.6 feet

Distance from muzzle to CH 1 and 2 - 21,5 feet
102.1 feet

Time for an acoustic wave traveling at

speed of sound to go 102.1 feet 91 milliseconds

Distance from muzzle to bombproof

2 and 3 and back to CH 3 and 4 129.5 feet

Distance from muzzle to CH 3 and & - 22.3 feet
107.2 feet

Time for an acoustlc wave traveling at

speed of sound to go 107.2 feet 96 milliseconds
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TEST STTE FOR M198 BLAST TEST

23 April 1980

u CH 1 (pencil gage)’¥ \(C“ “ Greneil
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5.7 (Cont'd)

Since a blast wave travels faster than the speed of sound, a care-
tul calculation of the transit times using the actual velocitles (which
are a function of blast pressure) would produce shorter transit :imes.
The above rough calculations are so close to the observed transit times
that a more scphisticated calculation is unnecessary.

The effect of bombproof No. 2 and 3 on the pressure time curve is
clear. The effect (if any) of bombproof No. 1 is not clear. It does
seem advantageous to insure that flat surfaces do not face directly
toward the source of blast.

In reference to observation lo. 2, the directional sensitivity of
the LC-33 pencil gage and the blunt cylinder mount explains this ob-
servation. As shown in figure 5.7-9, note that at negative misalignment
angles, the blunt cylinder mount attenuates more than the LC-33, It
is estimated that a yxround reflection would strike the tramnsducer at an
angle that corresponds to approximately -30 degrees on figure 5,7-1.
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5.8 EFFECTS OF AEROUDYNAMIC CLEANLINESS

Every object in the flow field of a shock wave generates a slpna-
ture. It is desirable to have transducers that are as aerodynamically
clean as passible, The following example {llustrates thils point.

Figure 5.8-1 shows the standard clamping arrangement used (o sccure
the blunt cylinder mount. These clamps provide several rotationul
degrees of freedom to facilitate accurate alignment.

Figure 5.8+2 is 3 pressure~time history obtained with the standard
clamp., Note the bump that occurs roughly 600 microseconds after the
blast wave passes the transducer. This bump is8 assumed to be caused by
a reflection from the clamping mechanism.

Figure 5,.8-3 shows an aerodynawically clean method of holding the
blunt cylinder mount. Alignment was accomplished by raising or lowering
the stand until grazing incidence wes achleved.

Figure 5.8-4 shows a pressure measurement made with the aerody-
namically clean mount. Note that the pressure decay is smooth, indi-
cating no reflections are present.

This experiment confirmed the suspicion that the bump during the
decay portion of the standard mount measurement was caused by reflectlen
from the clamping mechanism. The next step was to create an iIntentiocn-
ally dirty clamping arrangement and see if doing so accentuates the
reflection problem.

Figure 5.8=-5 shows the aerodynamically dirty clamping arrangement.
Note that the transducer is placed close to the supporting mechanism
and the thumbscrews are turned so that they are flat, reflecting sur-
faces, perpendicular to the direction of flow. p

Figure 5.8-6 1s a pressure versus time history obtalned with the

dirty mount. Note that the reflection has been dramatically accentuated, 3

‘ In fact, the peak pressure in this measurement is caused by the reflec-
: tion from the clamping mechanism, not from the incident presaure wavel

It is important to avoid situations where peak pressure depends
! more on the measurement system than the incident pressure wave. As
{ 1llustrated in this example, attention to aerodynamic cleanliness Is
i required to avold such a situation.
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SECTION 6. RECORDING, PLAYBACK, AND ANALYSIS OF DATA

6.1 INTRODUCTION

The chnice of equipment used to record and analyze blast measure-
ments can have a significant effect on the results obtained. Figure
6.1=1 shows a typical block diagram for data acquisition and data
analysls Instrumentation, Filgure 6.1-2 shows a data-acquisition
trailer in the fleld.

Figure 6.1-3 shows the interior of an FM tape recorvrder trailler.
This kind of data-acquisition instrumentation has been standard at
APG for many years. Analysis of the data 1s accomplimhed by subsequent
digitizing of the FM magnetic tape.

Figure 6.1=4 shows the 1 .~arior of one of the new digital data-
acquisition trailers. In this facility, the analog signal from the
transducer is immediately converted into digital form and stored in
digital memory. A mini~-computer in the trailer controls transfer of
the data and can perform on the spot analysis 1f necessary.

Figure 6.1-5 shows & digital transient recorder that has been
interfaced to s digital calculator and plotier., Because of 1ts samall

memory (4000 words), only a portion of the bluast record can be
faithfully recorded and stored.
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trailer for field measuirements.
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Photograph of data-acqu

Figure 6.1-2.
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6.2 EFFECTS OF FILTERS

Almest all analysis of blast overpressure 1s performed by digital
computers. An anti-allasing filter is required prior to digitizing
analog wavefnrms that are produced by a magnetic tape or directly from
the transducer.

Various filtars are avaiichble for this purpose. Some are designad
for optimum frequency response, oihers are designed for optimum
transiant response. Analysis of blast overpressure is normally done
in the time domain, with considerable interest in the peak pressure,.
For these reasons, optimum transieut response is desired.

Figure 6.2~1 shows the response uf various 40 kHz filters to a
step. Note that the ElViptic and Butterworth filters (which are de-
signed for vptimum frequency response) have severe overshoot. Note
that the Bessel filter (which 1s designed for optimum transient response)
has the least overshoot and the shortest rise time. Because of these
qualities, the Ressel filter 1s specified in the standardized procedures
for muzzle blast measurement (ref 4),
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6.3 TAPE RECORDER EFFECTS

Some tape recorders have filters in the playback electronics that
are user-selectable, The Honeywell 96 tape recorder has the option of
optimum frequency response or optimum rransient response in playback.
As shown in figure 6.3-1, the optimum trausient response is preferable
for analysis of transients with short rise timemn, like blast waves.

Figure 6.3-2 shows a recording played back through a Bessel filter
and the Bessel setting in the rucorder playback electronics compared
to the sama recording with Butterworth f£iltuilng., Note that inter-
pretation of the peak pressure of this recording can differ by 13%,
depending upon how the filters are set.
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6.4 COMPARISON OF RAW TRANSDUCER OUTPUT TO RECORDER AND FILTERED
SIGNALS

Reference 4 requires that analysis of muzzle blast measurements
be performed after the signal has been passed through a 40 kHz Hessel
filter with 36 dB/octave rolloff. To compare the effect of fili ~od
versus unfiltered signals, several measurements were simult..eovsly
recorded on & digital transient recorder and an FM tape recors .,
Figure 6,4-1 showa a block diagram of the instrumentation used tc play
back these recordings.

The tape recordings were made at 120 inches/second which produced
a frequency responge of BO kHz. In figures 6.4-2 through 6.4~4, the
unfiltered transducer output, the 80 kHz tape recording played btack
directly, and the tape recording played through a 40 kHz filter are
compared.

Note that in a standavd signal, such as shown in figure 6.4-2,
there 1s less than 1% difference between the filtered signal and the
signal directly out of the tape recorder. It is suspected that part
of the 4% difference between the raw transducer output and the recorder
output is due to some minor problem in the playback performance of the
particular tape recorder used in this experiment.

Figure 6.4-3 shows larger discrepancies between the direct, tape,
and filtered peak pressure values because the waveform has a sharper
peak. The waveform shown in flgure 6.4-4 has a very Bharp peak, which
produces very large discrepancies between the direct, tape, and filtered
peak pressure values,
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6.5 EFFECT OF ELECTRICAL NOISE ON 'B" DURATION

"B" duration is cssentially the time required for the pressure
versus time historv to decav to less than 10% of the peak pressure
value. Obviously, if the signal to noise ratfo fs 10:1 or less, the
"B'" duration will be infinite.

Signal to noise ratio is, therefore, critical to measurement of
"B" duration. Figure 6,5-1 shows a pressure measurcment made with an
FM tape recorder. Note that the width of the baseline noise is roughly
2% of the peak pressure. Later in the record, the noise level in-
creases for some unknown reason to roughly 7% of the peusk preessure.
Note that the "B'" duration indicated in this plot is 45 milliseconds,

Figure 6.5-2 is a recording of the same waveform using dig!tal
data acquisition with a much larger signal to noise ratio., Note that
with the ercess electrical noise removed, the "R" duration is dra-
matically reduced to 27.5 milliseconds.
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